Fast approaches for molecular polarizability calculations.
نویسندگان
چکیده
Molecular polarizability of a molecule characterizes the capability of its electronic system to be distorted by the external field, and it plays an important role in modeling many molecular properties and biological activities. In this paper, a set of fast empirical models have been developed to predict molecular polarizability using two types of approaches. The first type of approaches is based on Slater's rules of calculating the effective atomic nuclear shielding constants. The best model (model 1A) of this category has achieved an average unsigned error (AUE), root-mean square error (RMSE), and average percent error (APE) of 2.23 au, 3.29 au, and 2.77%, respectively. The second type of model is based on an additive hypothesis of molecular polarizability. Five models have been constructed using different schemes of atom types. The best model that applies 14 atom types, model 2e, achieves AUE, RMSE, and APE of 0.99 au, 1.48 au, and 1.24%, respectively. This performance is much better than those of the models purely based upon chemical composition (model 2A and the Bosque and Sales model), for which errors are about 2-fold higher. It is expected that both model 1A and model 2E will have broad applications in QSAR and QSPR studies.
منابع مشابه
Theoretical Calculations of Refractive Index of Synthesized One and Two Substituted Derivatives of Functionalized Bithiophene Compounds
In order to study the variation of electronic properties, a set of bithiophene derivatives has been developed. Here, the effect of substitution on the aromaticity properties of some cyclic bithiophene derivative compounds was investigated using theoretical calculations. Calculations were performed at B3LYP/6-31+G (d,p) level; and calculated properties included energy, dipole moment, total c...
متن کاملTheoretical calculations of solvation 12-Crown-4 (12CN4) in aqueous solution and its experimental interaction with nano CuSO4
Theoretical study of the electronic structure, and nonlinear optical properties (NLO) analysis of 12-crown-4were done using Density Functional Theory (DFT) evaluations at the B3LYP/6-311G (d,p) level of theory. The optimized structure is nonlinear compound as indicated from the dihedral angles were presented. The calculated EHOMO and ELUMO energies of 12-Crown-4 (12CN4) ca...
متن کاملResonant Second Harmonic Generation Studies of p-Nitrophenol Adsorption at Condensed-Phase Interfaces
A comprehensive analysis of adsorption strength, average molecular orientation, and absolute molecular direction for p-nitrophenol at solid-air, solid-liquid, and liquid-air interfaces is obtained from the nearresonant optical second harmonic generation (SHG) from the interface. Perturbation theory calculations of the molecular nonlinear polarizability tensor elements using *-electron wave func...
متن کاملAn Atomic Capacitance–Polarizability Model for the Calculation of Molecular Dipole Moments and Polarizabilities
A classical interaction model for the calculation of molecular polarizabilities has been investigated. The model is described by atomic capacitancies, polarizabilities, and a parameter related to the size of the atom, where one set of parameters has been employed for each element. The model has been parameterized for the elements H, C, N, O, F, and Cl from quantum chemical calculations of the m...
متن کاملTheoretical calculations of solvation 12-Crown-4 (12CN4) in aqueous solution and its experimental interaction with nano CuSO4
Theoretical study of the electronic structure, and nonlinear optical properties (NLO) analysis of 12-crown-4were done using Density Functional Theory (DFT) evaluations at the B3LYP/6-311G (d,p) level of theory. The optimized structure is nonlinear compound as indicated from the dihedral angles were presented. The calculated EHOMO and ELUMO energies of 12-Crown-4 (12CN4) ca...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The journal of physical chemistry. A
دوره 111 20 شماره
صفحات -
تاریخ انتشار 2007